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Know your physics and the rest will follow (R. K. Kalman) 

 
 

Chapter 3 
Modeling for Power System Relaying 

Analysis 

 
 

3.1 Introduction 
 

The power system comprises generators, step-up/step-down transformers, autotransformers, 

transmission lines (overhead or underground operating at various kV levels), reactors, capacitors, 

distribution lines, end-use equipment (customers), motors, etc. As examples, Figure 3.1 

illustrates an artistic visualization of power systems and Figure 3.2 illustrates typical distribution 

systems (utility) and end use equipment (customers). The illustrated power system and the 

medium voltage distribution systems are typical designs of US utilities to supply electric power 

to commercial, residential and industrial customers.  

 

Any power system analysis method must be able to model and analyze systems similar to the 

ones illustrated in Figures 3.1 and 3.2. The phenomena to be analyzed on these systems are 

numerous, i.e. power frequency, harmonics, dynamic transients, switching transients, lightning 

transients, in-rush current transients, etc.  Each of these phenomena may include different 

frequency spectra.  The models to be used should reproduce the response of the system to these 

phenomena with high fidelity. In this chapter we examine modeling techniques for various power 

system components that provide this capability. 

 

The various electric power system components that must be modeled are: 

 

 Transmission Lines 

 Transformers 

 Generators 

 Induction Machines 

 Capacitors 

 Reactors 

 Converters 

 Adjustable speed drives 

 Power supplies 

 etc. 

 

Some of the power system components are linear, i.e. they do not distort the applied voltage and 

current while others are distorting, i.e. they introduce distortion of the waveform, such as 

converters, adjustable speed drives, power supplies, transformers, etc. 
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Figure 3.1:  A Power System Comprising Generation, Transmission and Distribution - 
Overhead and Underground 

 

 
 

Figure 3.2: Typical Overhead and Underground Distribution Systems 
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We alluded to the fact that the component models should reproduce the response of the 

components to specific inputs and phenomena with high fidelity. It is important to recognize that 

the selection of the appropriate model depends on the phenomena to be studied. For example, to 

study power frequency phenomena in a transformer, a simple model will suffice. If, however, 

high frequency phenomena are to be studied, then a totally different transformer model will be 

necessary. Similarly, if transformer in-rush currents are to be computed, a totally different model 

must be utilized, specifically one that captures the nonlinearity of the transformer core and 

properly represent the dependence of the magnetizing current on the magnetic flux of the 

transformer core. The model selection also depends on the time period of concern. For example, 

if the steady state of the system is to be analyzed, appropriate steady state models should be 

used. If, however, inrush current phenomena in transformers are to be studied, another set of 

models must be employed. Therefore one should realize that the phenomena under study and the 

time period of concern will determine the selection of the proper model. The most usual 

phenomena under study and time periods of concern are listed below. 

 

Phenomena Under Study 

 

 Power Frequency 

 Line Switching 

 Capacitor Bank Switching 

 Transient Recovery Voltage 

 Lightning 

 

Period of Concern 

 

 Steady State 

 Short Term (seconds) 

 Milliseconds 

 Microseconds 

 

In the rest of this chapter, models of the most usual power system components will be introduced 

with comments about their applicability to specific phenomena under study. It should be 

understood, that most of the phenomena that affect power quality are typically of relatively low 

frequency. 

 

 

3.2 Transmission and Distribution Line Modeling 
 

Transmission and distribution lines can be of many varieties: overhead three phase, single phase, 

underground three phase cables, underground single phase cables, etc.  The distinction between 

transmission and distribution depends on the intended purpose of the power circuit. Specifically 

if the intended use is to supply customers (residential, commercial and industrial) then we refer 

to this line as distribution. In general distribution lines operate at medium voltage (a few kVs to 

about 35 kV) and most times they operate radially. Power circuits operating at higher voltages 

are typically classified as transmission circuits. Mathematically, the methods for modeling 
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transmission and distribution circuits are identical. We present some typical transmission and 

distribution lines and then we address the modeling of these components. 

 

The components of overhead transmission lines and distribution lines are illustrated in Figure 

3.3. A three-phase overhead line consists of three phase conductors HA, HB, and HC, which are 

suspended with insulators from towers. Most designs include an overhead ground wire (OHGW 

(OverHead Ground Wire) or shield wire) to provide protection against lightning. Many OHGW 

also include a tube with optical fibers for communications. The OHGW is typically connected to 

the neutral of the system and may be grounded at each tower. The tower grounding system may 

consist of counterpoise (illustrated in Figure 3.3), rings, ground rods, etc. A typical overhead 

transmission line terminates to two substations. The OHGW is typically connected to the 

grounding system of the substations. Figure 3.3 illustrates the termination of the OHGW to the 

substation ground mat. A three-phase overhead distribution line is also illustrated in Figure 3.3. 

It consists of three phase conductors, indicated as LA, LB, and LC, and a multiply grounded 

neutral conductor. The neutral conductor is typically bonded to the substation ground mat and to 

the grounds of the distribution poles.  

 

Overhead power lines are suspended on towers or poles. The design of transmission towers 

depends on the operating voltage of the line and other mechanical strength considerations. Three 

example tower/pole designs are illustrated in Figures 3.4, 3.5, and 3.6 for 230-kV, 115-kV, and 

12-kV lines, respectively. Note that the 12-kV line, which is typically used in distribution 

circuits, does not have an OHGW. Instead, it has a fourth conductor, the neutral, which is 

suspended below the phase conductors. While electrically the OHGW and neutral are similar, the 

naming difference reflects the fact that the OHGW is not intended to carry electric current under 

normal operating conditions while the neutral is intended to carry the return current under normal 

operating conditions. The size of the neutral conductor is comparable to that of the phase 

conductors and it is intended to carry potentially the full load current. The reason for this practice 

is the fact that distribution circuits may supply single phase loads connected between a phase and 

the neutral conductor. This practice generates unbalanced conditions and the neutral conductor 

may carry a substantial electrical current. 

 

 
 

Figure 3.3:  Overhead Power Lines: a Transmission and a Distribution Line Connected 
via a Power Transformer 
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Figure 3.4:  Design of a 230-kV H-frame Transmission Tower 
(Courtesy of Georgia Power Co.) 
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Figure 3.5:  Design of a 115-kV H-Frame Transmission Tower 

 

  
 

Figure 3.6:  Design of a 12-kV Single-Pole Distribution 
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Recent advances in technology have made DC transmission an economically attractive 

alternative over long distances. A typical DC transmission line is illustrated in Figure 3.7. It 

consists of two bundle conductors, the positive and negative poles, and an overhead ground 

conductor. 

 

 
 

Figure 3.7:  Design of a 400-kV HVDC Tower 
(Courtesy of the Electric Power Research Institute) 

 

Power lines can be also constructed from power cables. Cables may be three phase, or single 

phase cables connected in a three phase arrangement. A typical three phase construction with 

three single phase power cables is illustrated in Figure 3.8a and a typical three phase power cable 

construction is illustrated in Figure 3.8b. 
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(a) 

 

 
 

(b) 

 
Figure 3.8:  Typical Power Cables: (a) 3-Single Phase Solid Dielectric, (b) Three Phase Oil 

Filled 
 

A distribution system comprises power lines and voltage-step-down equipment for electric 

service at industrial, commercial, and residential sites. A distribution system may comprise 

three-phase transmission lines, with typical operating voltages of 12 to 35 kV line to line, and 

three-phase, two phase, or single phase tapped lines. The construction of these lines may be 

overhead or underground. These possibilities are illustrated in Figure 3.2. Figure 3.2 suggests 

that distribution systems may operate (and in fact they do operate) under unbalanced conditions. 

Some of this imbalance may transmit to the transmission system. This means that distribution 

systems present some unique analysis problems. In addition, recent advances in end-use 

equipment technology have resulted in electric loads that may be interacting with the system 

dynamically. For example, solid-state motor controllers, rectifiers, and so on, inject harmonics 

into the distribution system. Analysis and understanding of these phenomena require that the 

distribution system be modeled and understood not only for the power frequency (60-Hz in the 

United States, 50 Hz in Europe) but also for other frequencies, such as the harmonics of 60 Hz. 

 

For several technical and safety reasons, electric power installations must be grounded. 

Grounding of power systems is achieved by embedding metallic structures (conductors) into 

earth and electrically connecting these conductors to the neutral of the power system. In this way 

a low impedance is provided between the power system neutral and the vast conducting soil, 
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which guarantees that the voltage of the neutral, with respect to earth, will be low under all 

conditions. Grounding is necessary for several reasons: (a) to assure correct operation of 

electrical devices, (b) to provide safety during normal or fault conditions, (c) to stabilize the 

voltage during transient conditions, and (d) to dissipate lightning strokes. An example of the 

physical construction of a substation with the underlying grounding system is illustrated in 

Figure 3.9. 

 

 
 

Figure 3.9: Example of the Physical Arrangement of a Substation Illustrating the 
Grounding, Fences and Electrical Equipment 

 

The described physical structures are typically modeled with proper mathematical models. The 

presentation of line modeling will be done in several steps. First, we shall examine the per unit 

length parameters of a power line. These parameters are: resistance, inductance, and capacitance.  

 

Next, analysis procedures will be introduced by which equivalent circuits of power lines will be 

developed. Depending on the objectives of the analysis the mathematical models may be 

different for the same physical structure. As an example for analysis of a power lines under 

steady state 60 Hz sinusoidal operation, a -equivalent circuit completely captures the behavior 

of the line. However for the same line, this equivalent circuit is inadequate to describe transients 

on the line. In general, the following models of transmission and distribution lines and relative 

applications may be encounter: 

 

1. Three-phase power lines can be approximated in terms of their sequence equivalent 

circuits (positive, negative and zero sequence). These models represent an approximation 

of the actual behavior of a line. They are extensively used for power flow studies, short-

circuit analysis, and stability studies.  
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2. Power lines can be also modeled with explicit representation of transmission tower, 

neutral wires or ground wires, grounding systems and substation grounding systems. 

These models are applicable for ground potential rise computations, safety analysis and 

for design of grounding systems [???]. 

3. Distributed parameter models of power lines can be also developed. These models are 

applicable for fast electrical transient analysis, (such as switching transients, lightning 

transients) and the design of overvoltage protection. These models will not be considered 

in this book. 

 

In this section, the basic equations of a transmission line model are presented for low 

frequencies.  We focus on the derivation of the resistance, inductance and capacitance of the line 

and subsequent extraction of appropriate equivalent circuits. 

 

 

3.2.1 Resistance 
 

The resistance of power conductors is dependent upon the frequency of the electric current. For 

example the DC resistance ( dcr , f=0 Hertz) can be directly computed from the conductor 

material resistivity: 

 

meterohms
A

rdc /
1

  

 

where  is the resistivity of the conductor material and A is the cross section of the conductor. 

 

The computation of the AC resistance, acr , of a power conductor can be quite complicated, 

depending on the geometry (cross section) of the conductor. For cylindrical conductors, the AC 

resistance of the conductor is given in terms of Bessel functions: 

 

0
1 0

1

( )
sin ( ) ( ) /

2 ( ) 4
ac dc

M kaka
r r ka ka ohms meter

M ka


 
 

   
 

 

 

where: fk  2,  , a is the radius of the conductor 

Note ka  is a pure number (dimensionless) 

:)(),( 00 kakaM   are the magnitude and phase respectively of the modified Bessel function, 

order zero and argument ka. 

:)(),( 11 kakaM   are the magnitude and phase respectively of the modified Bessel function, 

order one, argument ka. 

 

Tabulation of these functions can be found in the references. For convenience, the values of 

these functions for the argument value up to 10 are provided in Table 3.1. Derivation of above 

equations for the ac resistance of cylindrical conductors can be found in [???]. 
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For other conductor cross section geometries, the reader is encouraged to consult the references. 

 
Table 3.1: Modulus and Phase of Modified Bessel Functions 

 

z M0(z) 0(z) M1(z) 1(z)  z M0(z) 0(z) M1(z) 1(z) 

0.000 
0.025 
0.050 
0.075 
0.100 
0.125 
0.150 
0.175 
0.200 
0.225 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

0.00 
0.01 
0.04 
0.08 
0.14 
0.22 
0.32 
0.44 
0.57 
0.73 

0.0000 
0.0125 
0.0250 
0.0375 
0.0500 
0.0625 
0.0750 
0.0875 
0.1000 
0.1125 

135.00 
135.00 
135.02 
135.04 
135.07 
135.11 
135.16 
135.22 
135.29 
135.36 

 1.300 
1.350 
1.400 
1.450 
1.500 
1.550 
1.600 
1.650 
1.700 
1.750 

1.0438 
1.0508 
1.0586 
1.0672 
1.0767 
1.0871 
1.0984 
1.1108 
1.1242 
1.1387 

23.75 
25.54 
27.37 
29.26 
31.19 
33.16 
35.17 
37.22 
39.30 
41.41 

0.6548 
0.6808 
0.7070 
0.7333 
0.7598 
0.7866 
0.8136 
0.8408 
0.8684 
0.8962 

147.07 
148.02 
148.99 
150.00 
151.04 
152.12 
153.23 
154.38 
155.55 
156.76 

0.250 
0.275 
0.300 
0.325 
0.350 
0.375 
0.400 
0.425 
0.450 
0.475 

1.0001 
1.0001 
1.0001 
1.0002 
1.0002 
1.0003 
1.0004 
1.0005 
1.0006 
1.0008 

0.90 
1.08 
1.29 
1.51 
1.75 
2.01 
2.29 
2.59 
2.90 
3.23 

0.1250 
0.1375 
0.1500 
0.1625 
0.1750 
0.1875 
0.2000 
0.2125 
0.2250 
0.2375 

135.45 
135.54 
135.64 
135.76 
135.88 
136.01 
136.15 
136.29 
136.45 
136.62 

 1.800 
1.850 
1.900 
1.950 
2.000 
2.050 
2.100 
2.150 
2.200 
2.250 

1.1544 
1.1712 
1.1892 
1.2085 
1.2290 
1.2509 
1.2741 
1.2986 
1.3246 
1.3520 

43.54 
45.70 
47.88 
50.08 
52.29 
54.51 
56.74 
58.98 
61.22 
63.46 

0.9244 
0.9530 
0.9819 
1.0113 
1.0412 
1.0715 
1.1024 
1.1339 
1.1659 
1.1987 

158.00 
159.27 
160.57 
161.90 
163.27 
164.66 
166.08 
167.53 
169.00 
170.50 

0.500 
0.525 
0.550 
0.575 
0.600 
0.625 
0.650 
0.675 
0.700 
0.725 

1.0010 
1.0012 
1.0014 
1.0017 
1.0020 
1.0024 
1.0028 
1.0032 
1.0037 
1.0043 

3.58 
3.95 
4.33 
4.73 
5.15 
5.59 
6.04 
6.52 
7.01 
7.51 

0.2500 
0.2626 
0.2751 
0.2876 
0.3001 
0.3126 
0.3252 
0.3377 
0.3502 
0.3628 

136.79 
136.97 
137.17 
137.37 
137.58 
137.80 
138.03 
138.26 
138.51 
138.76 

 2.300 
2.350 
2.400 
2.500 
2.600 
2.700 
2.800 
2.900 
3.000 
3.100 

1.3808 
1.4111 
1.4429 
1.5111 
1.5855 
1.6665 
1.7541 
1.8486 
1.9502 
2.0593 

65.71 
67.95 
70.19 
74.65 
79.09 
83.50 
87.87 
92.21 
96.52 

100.79 

1.2321 
1.2663 
1.3012 
1.3736 
1.4498 
1.5300 
1.6148 
1.7046 
1.7999 
1.9011 

172.03 
173.58 
175.16 
178.39 
181.70 
185.10 
188.57 
192.11 
195.71 
199.37 

0.750 
0.775 
0.800 
0.825 
0.850 
0.875 
0.900 
0.925 
0.950 
0.975 

1.0049 
1.0056 
1.0064 
1.0072 
1.0081 
1.0091 
1.0102 
1.0114 
1.0127 
1.0140 

8.04 
8.58 
9.14 
9.72 

10.31 
10.92 
11.55 
12.19 
12.86 
13.53 

0.3753 
0.3879 
0.4004 
0.4130 
0.4256 
0.4382 
0.4508 
0.4634 
0.4760 
0.4886 

139.03 
139.30 
139.58 
139.87 
140.17 
140.48 
140.80 
141.12 
141.46 
141.80 

 3.200 
3.300 
3.400 
3.500 
3.600 
3.700 
3.800 
3.900 
4.000 
4.500 

2.1760 
2.3009 
2.4342 
2.5764 
2.7280 
2.8894 
3.0613 
3.2443 
3.4391 
4.6179 

105.03 
109.25 
113.43 
117.60 
121.75 
125.87 
129.99 
134.10 
138.19 
158.59 

2.0088 
2.1236 
2.2458 
2.3763 
2.5155 
2.6640 
2.8227 
2.9920 
3.1729 
4.2783 

203.08 
206.83 
210.62 
214.44 
218.30 
222.17 
226.07 
229.98 
233.90 
253.67 

1.000 
1.025 
1.050 
1.075 
1.100 
1.125 
1.150 
1.175 
1.200 
1.225 
1.250 

1.0155 
1.0171 
1.0188 
1.0207 
1.0227 
1.0248 
1.0270 
1.0294 
1.0320 
1.0347 
1.0376 

14.23 
14.94 
15.66 
16.40 
17.16 
17.93 
18.72 
19.52 
20.34 
21.17 
22.02 

0.5013 
0.5140 
0.5267 
0.5394 
0.5521 
0.5648 
0.5776 
0.5904 
0.6032 
0.6161 
0.6290 

142.16 
142.52 
142.89 
143.27 
143.66 
144.05 
144.46 
144.87 
145.29 
145.73 
146.17 

 5.000 
5.500 
6.000 
6.500 
7.000 
7.500 
8.000 
8.500 
9.000 
9.500 

10.000 

6.2312 
8.4473 

11.5008 
15.7170 
21.5479 
29.6223 
40.8176 
56.3586 
77.9565 

108.0039 
149.8476 

178.93 
199.28 
219.62 
239.96 
260.29 
280.61 
300.92 
321.22 
341.52 
361.81 
382.10 

5.8091 
7.9253 

10.8502 
14.8961 
20.5003 
28.2737 
39.0697 
54.0807 
74.9740 

104.0822 
144.6705 

273.55 
293.48 
313.45 
333.46 
353.51 
373.59 
393.69 
413.82 
433.96 
454.11 
474.28 
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3.2.2  Inductance 
 

We examine the modeling methods for computing the inductance of transmission circuits. First 

the fundamentals are presented, followed by more practical analysis methods. 

 

3.2.2.1 Basic Magnetic Field Equation around a Conductor 
 

Conceptually, the phenomena to be studied can be explained through the simple two-conductor 

line illustrated in Figure 3.10. Assume that electric current i(t), which is time dependent, flows 

through one conductor and returns through the other conductor. The current flow generates a 

magnetic field that is time dependent, i.e. it follows the time variation of the electric current. 

Consider an infinitesimal length dx of conductor. Let d(t) be the magnetic flux linking the 

electric current i(t) flowing in the infinitesimal length dx of the conductor. By definition, the 

inductance of the length dx of the conductor is dL, where 

 

 
)(

)(

ti

td
dL


  (3.1) 

 

Since the magnetic flux linkage is time varying, a voltage dv(t) will be induced along length dx 

of the conductor: 

 

dt

tdi
dL

dt

td
tdv

)()(
)( 


 

 

Now assume that the inductance of the conductor is L henries per meter; then  

 

dL = L dx 

 

 
 

Figure 3.10:  A Simple Two Conductor Line 
 

Upon substitution in the equations above and subsequent solution for L, we have  

  

 

dt

tdi

dx

tdv

L
)(

)(

   H/m (Henries/meter) (3.2) 
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Equation (3.1) or (3.2) defines the inductance of a conductor. Specifically, Eq. (3.1) states that 

the inductance equals the magnetic flux linkage divided by the electric current. Alternatively, 

Equation (3.2) states that the inductance equals the induced voltage per unit length divided by the 

time derivative of the electric current. 

 

A transmission line is a complicated structure, comprising two or more conductors. Our 

objective in this chapter is to characterize each conductor with its inductance and also any pair of 

conductors with a mutual inductance. 

 

We introduce the basic concepts by considering the magnetic field of an infinity long conductor 

of circular cross section. For simplicity, assume that the conductor material is nonmagnetic. In 

other words, the permeability of the conductor material is 0 . A cross section of the conductor is 

shown in Figure 3.11a. The radius of the conductor is a. Further assume that the conductor 

carries an electric current i(t), which is uniformly distributed in the cross section of the conductor 

(i.e. constant current density). Under these assumptions, it is relatively easy to compute the 

magnetic field of the configuration and subsequently the inductance of the line. 

 

Because of the existing cylindrical symmetry, the magnetic field intensity H at a point A, 

illustrated in Figure 3.11a, will be perpendicular to the radial direction and the magnitude will be 

constant on the circular contour with center O and radius r. In other words, the magnitude of the 

magnetic field intensity, H, is a function of the radius r only [i.e. H(r)]. H(r) is computed with a 

direct application of Ampere's law on the described configuration. There are two cases. 

 

 
 

Figure 3.11: Infinitely Long Circular Conductor 
[(a) Cross Section, (b) Magnetic Flux Density Along a Radial Direction] 
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Case a.  The point A is located outside the conductor: 

 

r a  

 

Application of Ampere's law yields 

 

( ) ( ) 2 ( )
C

i t H r d rH r    

 

Upon solution for H(r), we obtain: 

 

 
( )

( ) ,
2

i t
H r r a

r
   (3.3) 

 

The magnetic flux density is given by 

 

   0 0

( )
( ) ,

2

i t
B r H r r a

r
 


    (3.4) 

 

Case b.  The point A is located inside the conductor: 

 

r a  

 

Application of Ampere's law yields: 

 

The electric current inside C2:  
2

2

( ) 2 ( )C

C

i H r d rH r    

 

In general the computation of the current inside the curve C2 may be quite complicated. For 

simplicity and for low frequencies, we introduce the simplifying assumption that the electric 

current density is constant inside the conductor In this case:  

 

The electric current inside C2:  
2

22

2
( ) ( ),C

r r
i i t i t r a

a a





 
   

 
 

 

Substitution and subsequent solution for H(r) yields 

 

  
1

( ),
2

r
H r i t r a

a a

 
  

 
 (3.5) 

and 

        0
0 ( ),

2

r
B r H r i t r a

a a






 
   

 
  (3.6) 
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The results are summarized in Figure 3.11b, where the magnetic flux density B(r) is plotted as a 

function of r along a radial direction. 

 

From the magnetic flux density B, the magnetic flux  crossing any surface S is computed from 

the integral  

 

S

B ds    

 

If the surface S crosses the conductor and since the electric current is distributed inside the 

conductor, the magnetic flux will link variable portions of the electric current. In this case the use 

of the concept of magnetic flux linkage is expedient. The magnetic flux linkage is defined by  

 

S

wB ds    

 

where w is the portion of electric current linked with the infinitesimal magnetic flux B ds . 

 

 

 
 

Figure 3.12: Geometry of surface S 

 

Given the magnetic flux linkage though a surface S, the induced voltage v(t) along the perimeter 

of the surface is computed by  

 

 
 d t

v t
dt


  
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As an example, consider a rectangular surface S, of dimensions   and D, located on a plane 

passing through the axis of the conductor. The surface S is defined in Figure 3.12. Consider the 

two illustrated infinitesimal strips of the area dr  located on the surface S and parallel to the axis 

of the conductor. One infinitesimal strip is located inside the conductor at a distance 1r a  from 

the axis. The magnetic flux through the infinitesimal strip 1 1dS dr at r r a   (inside the 

conductor), links 




r

a

2

2
 portion of the electric current. Thus the magnetic flux linkage int ( )d t is 

 

dr
a

tir
rB

a

r
td 

4

3

0

2

2

int
2

)(
)()(








   

 

The magnetic flux linkage of the second infinitesimal strip 2 2dS dr at r r a   (outside the 

conductor), links the entire electric current through the conductor. The magnetic flux linkage of 

this infinitesimal strip ( )extd t  is 

 

dr
r

ti
td ext 






2

)(
)( 0  

 

The total magnetic flux linkage through the surface S is 

 

 


D

ar

a

r
dr

r

ti
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a

tir
t 
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)(
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0 4
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Evaluation of the integrals provides the following result:  

  

 0 ( ) 1
( ) ln

2 4

i t D
t

a






  
    

  

 (3.7) 

 

Equation (3.7) is usually written in the following compact form: 

 

 
1

0 4
( )

( ) ln ,
2

i t D
t d ae

d






 
  

 
 (3.8) 

 

The quantity d is known as the geometric mean radius of the conductor. The physical meaning of 

the geometric mean radius is that a thin hollow conductor of radius equal to the geometric mean 

radius and carrying the same electric current i(t), produces the same magnetic flux linkage as the 

conductor under consideration. This interpretation will be illustrated by the following example. 

 

Example E3.1:  An infinitely long hollow conductor of average radius d and infinitesimal 

thickness carries as electric current i(t). The conductor is illustrated in Figure E3.1a. For clarity, 

it is shown with finite thickness. 
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Figure E3.1 Magnetic Field around a Hollow Conductor Carrying Electric Current 
 

Show that the magnetic flux linking a rectangular surface of dimensions   and D, with one  -

long side located on the axis of the conductor, is 

 

0 ( )
( ) ln

2

i t D
t

d






 
  

 
 

 

Solution:  The magnetic field density around this configuration is illustrated in Fig. E3.1b. 

Specifically, the magnetic field density is 

 

 

 0

0,

,
2

B r r d

i t
r d

r





 

 
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The magnetic flux linkage is 

 

0 0( ) ( )
( ) ln

2 2

D

r d

i t i t D
t dr

r d

 


 

 
   

 
  

This completes the proof. 

 

The induced voltage across the conductor due to the magnetic flux is readily computed from 

 

 
   0 ln

2

d t di tD
v t

dt d dt

 



 
   

 
 

 

By definition, the inductance of the conductor is 
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 

 
0 ln

2
t

t D
L

i t d

 



 
   

 
 

 

On a per unit length basis, the inductance is 

 

 0 ln
2

D
L

d





 
  

 
 (3.10) 

 

One should observe that the inductance of the conductor is dependent on the width D of the 

selected surface S. Since the width D can be selected arbitrarily, the result above does not have 

any physical meaning. This peculiarity occurs because the path of return of the electric current 

i(t) has been neglected. It is apparent that in order to compute the inductance of the conductor in 

a unique and meaningful way, it is necessary to consider the entire circuit which includes the 

path of return of the electric current. In any practical situation, all conductors or objects carrying 

electric current will be located in a finite area. In this case, as we shall see in subsequent 

sections, the inductance of the conductors can be uniquely defined. Despite the lack of realism of 

the configuration being considered, the results obtained are fundamental for the computation of 

the inductances of realistic transmission line configurations, as we shall see in subsequent 

sections. 

 

In summary we have derived expressions for the magnetic field density and magnetic flux 

linkage of a current carrying conductor.  We will use these results for the analysis of practical 

transmission lines. 

 

3.2.2.2 Inductive Equations of a Multi-Conductor Line 
 

In general a line configuration involves multiple conductors. Each conductor carries a certain 

electric current. Because of physical considerations (conservation of charge) the sum of the 

electric currents must be equal to zero. Such an arrangement is shown in Figure 3.13. The current 

of each conductor will establish a magnetic field around it which will link all other conductors. 

The net result will be an induced voltage on each conductor. Considering conductor j, the 

induced voltage will be along the conductor as it is shown in Figure 3.13. For computing this 

voltage one must determine the magnetic flux linkage per unit length of the conductor. 

 

Consider a rectangular frame with one side of the frame located on the axis of conductor j. The 

frame extends to a distance x from the axis of the conductor and its length is l. The flux linkage 

through this frame with respect to the current through conductor j, i.e. the flux linkage of 

conductor j will be 

 

   ( )jx jjx jkx

k

t t t     

 

where ( )jkx t  is the contribution of conductor k to the flux linkage of conductor j. 
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Figure 3.13: Illustration of Induced Voltage 
 

To compute this term consider Figure 3.14, which illustrates the cross section of the system of 

conductors (only conductors j and k are shown) and the frame jx. We would like to determine the 

flux linkage through the frame jx defined with the axis of conductor j and a line parallel to 

conductor j passing through point x. Note that the contribution to the magnetic flux linkage from 

the current of conductor j is: 

 

0 ( )
( ) ln
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j jx

jjx

j

i t D
t

d






 
   
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Also note that the contribution to the magnetic flux linkage of conductor j from the electric 

current of conductor k is the magnetic flux linkage through the surface defined with the line 
jkd . 

This magnetic flux equals the flux linkage through the line mx which is given by 

 

0 ( )
( ) ln

2

k kx
jkx

jk

i t D
t

d






 
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Note that the distance dkm is the same as the distance djk. The total magnetic flux linkage through 

the frame jx can be formed from the contribution to the flux from all conductors, i.e.: 

 

0 0
( ) ( )

( ) ln ln
2 2

j jx k kx
jx

kj jk

i t D i t D
t

d d

 


 
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The above equation can be written in compact form as follows: 
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Figure 3.14: Illustration of Magnetic Flux Through Plane djx 
due to Electric Current ik (t) 
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where n is the number of conductors, 
jkd  is the distance between conductors j, k if  j  k, and 

jjd  is the geometric mean radius of conductor j. 

 

It is easy to prove that under the observation that 
1

( ) 0
n

k

k

i t


  and as the point x goes to infinity: 
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 
  

 

Proof: Since the sum of all currents equals zero, then the current of the last conductor n can be 

written as the negative sum of all other currents: 

 

 
1

1

( )
n

n k

k

i t i t



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Upon substitution in the expression for the magnetic flux linkage: 
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The above expression can be rewritten in the following form: 

 

1 1 1
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Note that the last sum will vanish as the point x goes to infinity because each term will become 

zero (logarithm of 1.0). The second sum can be expressed in terms of the current in conductor n. 

Thus: 
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This concludes the proof. 

 

The induced voltage along the conductor is computed as the time derivative of the magnetic flux 

linkage of the conductor. 
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Assuming sinusoidal steady state conditions, 
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Upon substitution with manipulations 
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The previous results can be directly used to determine the induced per unit length of any line.  
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3.2.2.3 Inductive Equations of a Multi-Conductor Line Above Earth 
 

Overhead or underground power transmission lines are characterized by the fact that earth is one 

of the paths for the flow of electric current. Electric current can flow into the soil through the 

grounding system (substation ground mat, pole grounds, etc.) and vice versa can flow into the 

shield/neutral wires from the soil. During normal operating conditions, some electric current 

flows in the conductive earth soil. This current it is generally generated by a combination of 

inductive, conductive and capacitive phenomena. In general, the magnitude of the earth current 

during normal operating conditions is comparatively low. During abnormal operating conditions 

(faults), a substantial amount of electric current may flow through earth. In any case, the earth 

current induces a voltage along the transmission line, thus affecting the performance of the 

power line. As a matter of fact, most three-phase overhead transmission circuits are designed in 

such a way that during ground faults the majority of the fault current flows through the earth. 

 

The distribution of the current in the earth follows a complex, non-uniform pattern. As a result, 

the computation of the inductive reactance of the earth path and the mutual inductance between 

the earth path and overhead conductors is very complex. In this section we present the 

expressions for the series impedances, derived by Carson [???] and Rudenberg [???]. The results 

have been converted into the metric system of units (or English system) and adapted to the two-

conductor system above earth as it illustrated in Figure 3.15. Specifically, consider the simplest 

configuration of two overhead conductors, j and k respectively, parallel to the surface of the 

earth and carrying electric currents j kI and I , respectively. The configuration is illustrated in 

Figure 3.15a and 3.15b. Assume that there are not any other conductors in the vicinity. Then the 

current through the soil path, i.e. the earth current 
eI , is  kje III

~~~
 . Carson [???] has given a 

solution to this problem in terms of a complex infinite series. A converted version of Carson’s 

result (converted into the metric system of units) is provided below (only the first few terms of 

the infinite series are retained).  Specifically, the induced voltage along the conductor a is:  
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Where: 

 

 ra  is the conductor AC resistance at frequency ω computed as follows: 
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k  ,  σ is the conductor conductivity, and  is angular frequency of the electric current. 

 

d is the geometric mean radius of the overhead conductor a, which is calculated in terms of the  

conductor actual radius a as follows: 
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aI
~

 is the current through the overhead conductor a, and bI
~

 is the current through the overhead 

conductor b.  The terms Paa, Qaa, Pab, Qab are computed in terms of infinite series, the first few 

terms of which are given below: 

 

...
1536245

)
2

ln6728.0(
16238

432


xx

x

xx
Paa


 

2 3 4 41 2 2
0.0386 ln ln 1.0895 ...

2 64 384 3843 2 45 2
aa

x x x x x
Q

x x

  
          

 
 

...4cos
1536

3cos
245

2sin
16

)
2

ln6728.0(2cos
16

cos
238

4322

 



 yyy

y

yy
Pab  

...)0895.1
2

(ln4cos
384

4sin
384

3cos
245

2cos
64

cos
23

2
ln

2

1
0386.0

4432


y

yyyyy

y
Qab 




 

where: 
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/sk   , where ρ is the soil resistivity 
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Figure 3.15: Two Parallel Power Conductors Above Soil 

 

Note that the above equation provides the self and mutual series impedances of any conductor or 

any pair of conductors respectively.  Specifically, the self-series impedance of conductor a is: 
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The mutual series impedance between conductors a and b is: 
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The above impedances are given in per unit length.  Note that these equations can be repeated for 

any conductor and any pair of conductors of any complex arrangement of n conductors. 

 

Equivalent Depth of Return Method: This method is obtained from the general solution 

(Carson [???]) presented earlier if only the first term of the infinite series is retained. The basic 

equations of this model can be stated with the aid of Figure 3.15 which illustrates two horizontal 

conductors above earth.  The two conductors may be the two phases of a line, a phase conductor 

and a shield conductor, etc.  The induced voltage on conductor a is expressed in terms of the 

equivalent depth of return, De, defined by 
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where ρ is the soil resistivity in Ohm-meters, and f is the electric current frequency in Hz.  The 

induced voltage per unit length of conductor a is 
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 a  = radius of conductor a 

   = angular frequency 

   = permeability of free space ( 4πx10-7 H/m ) 

   = conductivity of the conductor 

 0 0,M   = modulus and phase of the modified Bessel function of first kind and zero order 

 1 1,M   = modulus and phase of the modified Bessel function of first kind and first order. 

Above equation provides the self and mutual series impedance of any conductor or any pair of 

conductors respectively. Specifically, the series self-series impedance of conductor a is: 

, ln
2

e
a series a e

a

D
z r r j

d




    

The mutual series impedance between conductors a and b is: 

, ln
2

e
ab series e

ab

D
z r j

D




   

The above method is called the equivalent depth of return method. It is also many times referred 

to as Carson’s equation. This simplified formula is valid only for usual soil resistivities (20 to 

500 Ohm.m) and for low frequencies such as the power frequency (50 or 60 Hz), and for usual 

overhead line configurations. 
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Interpretation of the Equivalent Depth of Return Method: A physical interpretation of the 

equivalent depth of return method can be provided as follows. The equivalent depth, eD , defines 

the cross section of the soil under the line where the majority of the electric current returns. For 

example, consider the simple case of one conductor above earth carrying an electric current and 

the electric current returns through the earth. The return current is spread into the soil and most 

of the current returns to the source through a semi-circle with radius equal to the equivalent 

depth of return. The higher the frequency the smaller the radius will be. This interpretation 

applies to any electric current under a multi-conductor line in which case the return current 

through the earth will be the negative sum of all currents in the conductors of the line. A 

visualization of this interpretation is provided in Figure 3.16. 

 

 

Figure 3.16: Interpretation of the Equivalent Depth of Return Method 

 

Complex Depth of Return Method: Another method which is provided in closed form and it is 

remarkably accurate over a wide frequency range is the complex depth of return method. The 

basic equations of this model can be stated with the aid of Figure 3.15 which illustrates two 

horizontal conductors above earth.  The two conductors may be the two phases of a line, a phase 

conductor and a shield conductor, etc.  The induced voltage on conductor a is expressed in terms 

of the complex depth p [???] [???], defined by: 

1.0

/
p

j 
  
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where ρ is the soil resistivity.  The induced voltage per unit length of conductor a is 

2 2
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Where: 

,a bh h  = heights of conductors a and b above ground (meters) 

abd  = horizontal separation between conductors a and b (meters) 

a  = radius of conductor a (meters) 
  = angular frequency (rad/s) 
  = permeability of free space (4πx10-7H/m) 

  = conductor conductivity (S/m) 
  = soil resistivity (Ωm) 

0 0,M  = modulus and phase of the modified Bessel function of first kind and zero order. 

1 1,M   = modulus and phase of the modified Bessel function of first kind and first order. 

The above equation provides the self and mutual series impedance of any conductor or any pair 

of conductors respectively. Specifically, the series self-series impedance of conductor a is: 

 

,
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The mutual series impedance between conductors a and b is: 
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The above method is called the complex depth of return method which is a closed-form 

approximation to Carson's solution and was suggested by Semlyen and Deri [???].  This closed-

form solution yields a remarkably close agreement with the exact Carson's solution in a wide 

range of frequencies (0 to 10 MHz) for typical overhead line configurations. 

Summary of the Three Methods: Note that each one of the three presented methods provide the 

self and mutual impedance of two parallel conductors above earth.  These results can be easily 

generalized to an n-conductor configuration above soil by considering two conductors at a time. 

Specifically, the series impedance of an n-conductor power line is provided by 

 


















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

nnnnnnnn jXRjXRjXR

jXRjXR

LjRZ







2211

12121111

  

 

The elements of the above matrix can be computed with any of the three methods presented. 

 

Example E3.2: Consider the three-phase electric power line of Figure E3.2. The phase 

conductors are ACSR, 556,500 cm, 26 strands. The line does not have an overhead ground wire. 

The soil resistivity ρ is 75 Ωm. Compute the resistance and inductance matrices of this line 

using:  (a) The equivalent depth of return, (b) The complex depth of return method. 
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Figure E3.2 

 
  



Power System Relaying: Theory and Applications: Chapter 3–Meliopoulos & Cokkinides 

 

Copyright © A. P. Sakis Meliopoulos – 1996-2020 Page 3.32 

 

Solution:  (a) The series impedance of the line using the equivalent depth of return method is: 
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From ACSR conductor tables we obtain the following conductor parameters: 

 

 Conductor Resistance at 60 Hz, r = 0.1611 Ω/mile = 0.0001 Ω/m. 

 Conductor Geometric Mean Radius:  0.0315 feet. 

 

Furthermore, 

75
2,160 2, 415

60
eD ft   

14.56ab bad d ft   

14.87ac cad d ft   

9.0bc cbd d ft   

0.0315aa bb ccd d d ft    

 

Upon substitution into the above impedance matrix formula:  

 

3 3

0.159 0.059 0.059 0.8478 0.3853 0.3838

10 0.059 0.159 0.059 10 0.3853 0.8478 0.4215 /
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   
   

  
   
      

 

 

(b) The series impedance of the line using the complex depth of return method is: 

 

, , ,

, b, ,

, , c,

a series ab series ac series

ba series series bc series

ca series cb series series

z z z

R j L z z z

z z z



 
 

   
 
 

 

Where: 

i,

2( )
ln , , ,

2

i
series i

h p
z r j i a b c

d






   , and 



Power System Relaying: Theory and Applications: Chapter 3–Meliopoulos & Cokkinides 

 

Copyright © A. P. Sakis Meliopoulos – 1996-2020 Page 3.33 

 

2 2

,
2 2

( 2 )
ln , , ,

2 ( )

i k ik

ik series

i k ik

h h p d
z j ik ab bc ca

h h d





  
 

 
 

 

 

where:   
1.0

/
p

j 
  

 

Upon substitution one obtains: 

 

281.349 281.349p j m   

 

and: 

3 3

0.157 0.057 0.057 0.8559 0.3906 0.3876
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Comparing the results of (a) and (b) it appears that they are remarkably close. 

 

3.2.3  Capacitance 
 

In this section we discuss methods by which the capacitance of a transmission line can be 

computed.  For this purpose we employ an approach analogous to the one for computing the 

inductive reactance of a transmission line. Recall that for the computation of the inductive 

reactance, the magnetic field around the transmission line was examined. For the computation of 

the line capacitance, the electric field around the line will be examined. The source of this 

electric field is electric charge, which is deposited on the surface of the line conductors. The 

analysis of the electric field results in a model relating the electric charge and the conductor 

voltage. The time derivative of the total electric charge on the surface of the conductors is by 

definition the capacitive current (or the charging current) of the line. Utilizing this definition, the 

model can be transformed into a relationship between the line voltage and the capacitive current. 

The line capacitance can be extracted from this model. 

 

This general approach will be utilized to introduce the analysis of capacitive phenomena in lines 

in a step-by-step procedure. Specifically, first the simplest case of a single circular conductor 

will be examined to establish the basic equations. Then the analysis will be extended to two 

parallel conductors and the general n-conductor line configuration. 

 

3.2.3.1 Basic Electric Field Equations around a Conductor 
 

Consider the simple case of one circular infinitely long conductor. We shall assume that the 

conductor is electrically charged and we shall seek the relationship between the electric charge 

and the conductor voltage. Specifically, assume that the conductor is charged with electric 

charge q (coulombs per meter). Because of symmetry, the electric charge will be uniformly 
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distributed on the conductor surface. The electric charge generates an electric field around the 

conductor. Because of symmetry, the electric field intensity E will be radially directed and the 

magnitude will depend only on the distance of the point of observation from the axis of the 

conductor, as illustrated in Figure 3.17: 

 

 rarEE


)(  (3.13) 

 

Where 
ra


 is a unit vector in the radial direction r. 

 

Consider a cylinder of length   and circular bases of radius r. The axis of the cylinder is 

coincident with the axis of the conductor, as it is illustrated Figure 3.17. Let S be the surface of 

the cylinder and V its volume. Application of Gauss’s law yields: 

 

 . .
V S S

dv D ds E ds      (3.14)  

 

 
 

Figure 3.17: An Infinitely Long Circular Conductor 
 

where 

   = electric charge density, 3/C m  

 E   = electric field intensity 

 D  = electric field density 

 dv  = infinitesimal volume 

 ds = infinitesimal surface area vector 
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The volume integral of the electric charge density inside the volume of the cylinder equals the 

total electric charge enclosed in the volume. It can be immediately computed by observing that 

electric charge exists only on the conductor surface at a density of q coulombs per meter. Thus 

 

V

dv q   

 

The surface integral on the right-hand side of Equation (3.14) is computed as follows: 
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where S1, S2 are the bases of the cylinder and S3 is the side surface of the cylinder. Note that 

because the electric field is radially directed, the contributions of the bases of the cylinder will 

vanish, that is,  

 

0.0..
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sdDsdD
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As has been discussed, the magnitude of the electric field intensity E


 and therefore D


 is a 

function of the radial distance r only. Thus on the surface S3, the magnitude of the electric field 

density, D(r), is constant. In addition, the vector D


is perpendicular to the surface S3 and thus 

parallel to sd


. Thus 
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Substitution into Eq. (4.2) yields 

 
)(2)(2 rErrDrq     

 

In above equation we used the constitutive relationship: D(r) =  E(r). Solution of above equation 

for E(r) yields: 
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q
E r

r
  (3.15) 

 

The electric field inside the conductor is zero. 

 

The computed electric field intensity provides the basis for computation of the potential 

difference between any two points A and B. This difference is the voltage VAB between point A 

and B, defined by: 
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The value of above integral depends only on points A and B (the reader is encouraged to prove 

it). Evaluation of the integral yields: 
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  (3.16) 

 

where: A Bd and d   are the distances of points A and B respectively from the axis of the 

conductor. 

 

Equation (3.16) relates the electric charge on the conductor to the potential difference between 

two points located at radial distances A Bd and d , respectively, from the axis of the conductor. 

Equation (3.16) is the basic equation utilized in the analysis of transmission line capacitance. 

 

3.2.3.2. Capacitive Equations of a Multi-Conductor Line 
 

Consider a configuration of n conductors which are parallel and infinitely long. The conductor 

cross section is circular. Figure 3.18 shows a cross section of the configuration. Assume that 

electric charge qi(t) per unit length has been accumulated on the surface of conductor i which is 

uniformly distributed over the surface of the conductor. As a first step, we consider the potential 

of conductor i with respect to an arbitrarily selected point of reference X which is illustrated in 

Figure 3.18. For this purpose the principle of superposition and the results of section 3.2.3.2 are 

employed to yield 

  
 

Figure 3.18: General Configuration of n-Parallel Conductors 
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 (3.17) 

where 

 
ijd  = distance between the axes of conductors i and j  

 
jxd  = distance between the axis of conductor j and point X 


