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Know your physics and the rest will follow (R. K. Kalman)

Chapter 3
Modeling for Power System Relaying
Analysis

3.1 Introduction

The power system comprises generators, step-up/step-down transformers, autotransformers,
transmission lines (overhead or underground operating at various kV levels), reactors, capacitors,
distribution lines, end-use equipment (customers), motors, etc. As examples, Figure 3.1
illustrates an artistic visualization of power systems and Figure 3.2 illustrates typical distribution
systems (utility) and end use equipment (customers). The illustrated power system and the
medium voltage distribution systems are typical designs of US utilities to supply electric power
to commercial, residential and industrial customers.

Any power system analysis method must be able to model and analyze systems similar to the
ones illustrated in Figures 3.1 and 3.2. The phenomena to be analyzed on these systems are
numerous, i.e. power frequency, harmonics, dynamic transients, switching transients, lightning
transients, in-rush current transients, etc. Each of these phenomena may include different
frequency spectra. The models to be used should reproduce the response of the system to these
phenomena with high fidelity. In this chapter we examine modeling techniques for various power
system components that provide this capability.

The various electric power system components that must be modeled are:

Transmission Lines
Transformers
Generators

Induction Machines
Capacitors

Reactors

Converters

Adjustable speed drives
Power supplies

etc.

Some of the power system components are linear, i.e. they do not distort the applied voltage and
current while others are distorting, i.e. they introduce distortion of the waveform, such as
converters, adjustable speed drives, power supplies, transformers, etc.
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Figure 3.2: Typical Overhead and Underground Distribution Systems

Copyright © A. P. Sakis Meliopoulos — 1996-2020

Page 3.4



Power System Relaying: Theory and Applications: Chapter 3—Meliopoulos & Cokkinides

We alluded to the fact that the component models should reproduce the response of the
components to specific inputs and phenomena with high fidelity. It is important to recognize that
the selection of the appropriate model depends on the phenomena to be studied. For example, to
study power frequency phenomena in a transformer, a simple model will suffice. If, however,
high frequency phenomena are to be studied, then a totally different transformer model will be
necessary. Similarly, if transformer in-rush currents are to be computed, a totally different model
must be utilized, specifically one that captures the nonlinearity of the transformer core and
properly represent the dependence of the magnetizing current on the magnetic flux of the
transformer core. The model selection also depends on the time period of concern. For example,
if the steady state of the system is to be analyzed, appropriate steady state models should be
used. If, however, inrush current phenomena in transformers are to be studied, another set of
models must be employed. Therefore one should realize that the phenomena under study and the
time period of concern will determine the selection of the proper model. The most usual
phenomena under study and time periods of concern are listed below.

Phenomena Under Study

Power Frequency

Line Switching

Capacitor Bank Switching
Transient Recovery Voltage
Lightning

Period of Concern

Steady State

Short Term (seconds)
Milliseconds
Microseconds

In the rest of this chapter, models of the most usual power system components will be introduced
with comments about their applicability to specific phenomena under study. It should be
understood, that most of the phenomena that affect power quality are typically of relatively low
frequency.

3.2 Transmission and Distribution Line Modeling

Transmission and distribution lines can be of many varieties: overhead three phase, single phase,
underground three phase cables, underground single phase cables, etc. The distinction between
transmission and distribution depends on the intended purpose of the power circuit. Specifically
if the intended use is to supply customers (residential, commercial and industrial) then we refer
to this line as distribution. In general distribution lines operate at medium voltage (a few kVs to
about 35 kV) and most times they operate radially. Power circuits operating at higher voltages
are typically classified as transmission circuits. Mathematically, the methods for modeling
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transmission and distribution circuits are identical. We present some typical transmission and
distribution lines and then we address the modeling of these components.

The components of overhead transmission lines and distribution lines are illustrated in Figure
3.3. A three-phase overhead line consists of three phase conductors HA, HB, and HC, which are
suspended with insulators from towers. Most designs include an overhead ground wire (OHGW
(OverHead Ground Wire) or shield wire) to provide protection against lightning. Many OHGW
also include a tube with optical fibers for communications. The OHGW is typically connected to
the neutral of the system and may be grounded at each tower. The tower grounding system may
consist of counterpoise (illustrated in Figure 3.3), rings, ground rods, etc. A typical overhead
transmission line terminates to two substations. The OHGW is typically connected to the
grounding system of the substations. Figure 3.3 illustrates the termination of the OHGW to the
substation ground mat. A three-phase overhead distribution line is also illustrated in Figure 3.3.
It consists of three phase conductors, indicated as LA, LB, and LC, and a multiply grounded
neutral conductor. The neutral conductor is typically bonded to the substation ground mat and to
the grounds of the distribution poles.

Overhead power lines are suspended on towers or poles. The design of transmission towers
depends on the operating voltage of the line and other mechanical strength considerations. Three
example tower/pole designs are illustrated in Figures 3.4, 3.5, and 3.6 for 230-kV, 115-kV, and
12-kV lines, respectively. Note that the 12-kV line, which is typically used in distribution
circuits, does not have an OHGW. Instead, it has a fourth conductor, the neutral, which is
suspended below the phase conductors. While electrically the OHGW and neutral are similar, the
naming difference reflects the fact that the OHGW is not intended to carry electric current under
normal operating conditions while the neutral is intended to carry the return current under normal
operating conditions. The size of the neutral conductor is comparable to that of the phase
conductors and it is intended to carry potentially the full load current. The reason for this practice
is the fact that distribution circuits may supply single phase loads connected between a phase and
the neutral conductor. This practice generates unbalanced conditions and the neutral conductor
may carry a substantial electrical current.

Shield (OHGW)
HA
HB
HC

LB
LCL A Neutral

Counterpoise

| Ground Rods

Ground Mat
‘ -

Figure 3.3: Overhead Power Lines: a Transmission and a Distribution Line Connected
via a Power Transformer
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Figure 3.4: Design of a 230-kV H-frame Transmission Tower
(Courtesy of Georgia Power Co.)
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Figure 3.6: Design of a 12-kV Single-Pole Distribution
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Recent advances in technology have made DC transmission an economically attractive
alternative over long distances. A typical DC transmission line is illustrated in Figure 3.7. It
consists of two bundle conductors, the positive and negative poles, and an overhead ground
conductor.
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Figure 3.7: Design of a 1400-kV HVDC Tower
(Courtesy of the Electric Power Research Institute)

Power lines can be also constructed from power cables. Cables may be three phase, or single
phase cables connected in a three phase arrangement. A typical three phase construction with
three single phase power cables is illustrated in Figure 3.8a and a typical three phase power cable
construction is illustrated in Figure 3.8b.
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Figure 3.8: Typical Power Cables: (a) 3-Single Phase Solid Dielectric, (b) Three Phase Oil
Filled

A distribution system comprises power lines and voltage-step-down equipment for electric
service at industrial, commercial, and residential sites. A distribution system may comprise
three-phase transmission lines, with typical operating voltages of 12 to 35 kV line to line, and
three-phase, two phase, or single phase tapped lines. The construction of these lines may be
overhead or underground. These possibilities are illustrated in Figure 3.2. Figure 3.2 suggests
that distribution systems may operate (and in fact they do operate) under unbalanced conditions.
Some of this imbalance may transmit to the transmission system. This means that distribution
systems present some unique analysis problems. In addition, recent advances in end-use
equipment technology have resulted in electric loads that may be interacting with the system
dynamically. For example, solid-state motor controllers, rectifiers, and so on, inject harmonics
into the distribution system. Analysis and understanding of these phenomena require that the
distribution system be modeled and understood not only for the power frequency (60-Hz in the
United States, 50 Hz in Europe) but also for other frequencies, such as the harmonics of 60 Hz.

For several technical and safety reasons, electric power installations must be grounded.
Grounding of power systems is achieved by embedding metallic structures (conductors) into
earth and electrically connecting these conductors to the neutral of the power system. In this way
a low impedance is provided between the power system neutral and the vast conducting soil,
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which guarantees that the voltage of the neutral, with respect to earth, will be low under all
conditions. Grounding is necessary for several reasons: (a) to assure correct operation of
electrical devices, (b) to provide safety during normal or fault conditions, (c) to stabilize the
voltage during transient conditions, and (d) to dissipate lightning strokes. An example of the
physical construction of a substation with the underlying grounding system is illustrated in
Figure 3.9.

Figure 3.9: Example of the Physical Arrangement of a Substation lllustrating the
Grounding, Fences and Electrical Equipment

The described physical structures are typically modeled with proper mathematical models. The
presentation of line modeling will be done in several steps. First, we shall examine the per unit
length parameters of a power line. These parameters are: resistance, inductance, and capacitance.

Next, analysis procedures will be introduced by which equivalent circuits of power lines will be
developed. Depending on the objectives of the analysis the mathematical models may be
different for the same physical structure. As an example for analysis of a power lines under
steady state 60 Hz sinusoidal operation, a w-equivalent circuit completely captures the behavior
of the line. However for the same line, this equivalent circuit is inadequate to describe transients
on the line. In general, the following models of transmission and distribution lines and relative
applications may be encounter:

1. Three-phase power lines can be approximated in terms of their sequence equivalent
circuits (positive, negative and zero sequence). These models represent an approximation
of the actual behavior of a line. They are extensively used for power flow studies, short-
circuit analysis, and stability studies.
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2. Power lines can be also modeled with explicit representation of transmission tower,
neutral wires or ground wires, grounding systems and substation grounding systems.
These models are applicable for ground potential rise computations, safety analysis and
for design of grounding systems [??77].

3. Distributed parameter models of power lines can be also developed. These models are
applicable for fast electrical transient analysis, (such as switching transients, lightning
transients) and the design of overvoltage protection. These models will not be considered
in this book.

In this section, the basic equations of a transmission line model are presented for low
frequencies. We focus on the derivation of the resistance, inductance and capacitance of the line
and subsequent extraction of appropriate equivalent circuits.

3.2.1 Resistance

The resistance of power conductors is dependent upon the frequency of the electric current. For

example the DC resistance (l4, f=0 Hertz) can be directly computed from the conductor
material resistivity:

e = p%\ ohms/meter

C
where p is the resistivity of the conductor material and A is the cross section of the conductor.

The computation of the AC resistance, I, of a power conductor can be quite complicated,

depending on the geometry (cross section) of the conductor. For cylindrical conductors, the AC
resistance of the conductor is given in terms of Bessel functions:

. _, kaMj(ka)
ac dc 2 Ml(ka)

sin (@(ka) —6,(ka) —%j ohms / meter

where: K= aouo, o =2xf | ais the radius of the conductor
Note ka is a pure number (dimensionless)

Mo(ka), 90(k3)1 are the magnitude and phase respectively of the modified Bessel function,

order zero and argument ka.
M, (ka), 6, (ka): are the magnitude and phase respectively of the modified Bessel function,

order one, argument ka.

Tabulation of these functions can be found in the references. For convenience, the values of
these functions for the argument value up to 10 are provided in Table 3.1. Derivation of above
equations for the ac resistance of cylindrical conductors can be found in [??7].
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For other conductor cross section geometries, the reader is encouraged to consult the references.

Table 3.1: Modulus and Phase of Modified Bessel Functions

z Mo(z) &(z) Mai(2) &(2) | z Mo(z) &(2) Mai(z) 6.(2)
0.000 1.0000 0.00 0.0000 135.00 1.300 1.0438 23.75 0.6548 147.07
0.025 1.0000 0.01 0.0125 135.00 1.350 1.0508 25.54 0.6808 148.02
0.050 | 1.0000 0.04 0.0250 135.02 1.400 1.0586 27.37 0.7070 148.99
0.075 | 1.0000 0.08 0.0375 135.04 1.450 1.0672 29.26 0.7333 150.00
0.100 | 1.0000 0.14 0.0500 135.07 1.500 1.0767 31.19 0.7598 151.04
0.125 | 1.0000 0.22 0.0625 135.11 1.550 1.0871 33.16 0.7866 152.12
0.150 1.0000 0.32 0.0750 135.16 1.600 1.0984 35.17 0.8136 153.23
0.175 1.0000 0.44 0.0875 135.22 1.650 1.1108 37.22 0.8408 154.38
0.200 1.0000 0.57 0.1000 135.29 1.700 1.1242 39.30 0.8684 155.55
0.225 | 1.0000 0.73 0.1125 135.36 1.750 1.1387 41.41 0.8962 156.76
0.250 | 1.0001 0.90 0.1250 135.45 1.800 1.1544 43.54 0.9244 158.00
0.275 | 1.0001 1.08 0.1375 135.54 1.850 1.1712 45.70 0.9530 159.27
0.300 1.0001 1.29 0.1500 135.64 1.900 1.1892 47.88 0.9819 160.57
0.325 1.0002 1.51 0.1625 135.76 1.950 1.2085 50.08 1.0113 161.90
0.350 | 1.0002 1.75 0.1750 135.88 2.000 1.2290 52.29 1.0412 163.27
0.375 1.0003 2.01 0.1875 136.01 2.050 1.2509 5451 1.0715 164.66
0.400 | 1.0004 2.29 0.2000 136.15 2.100 1.2741 56.74 1.1024 166.08
0.425 | 1.0005 2.59 0.2125 136.29 2.150 1.2986 58.98 1.1339 167.53
0.450 1.0006 2.90 0.2250 136.45 2.200 1.3246 61.22 1.1659 169.00
0.475 1.0008 3.23 0.2375 136.62 2.250 1.3520 63.46 1.1987 170.50
0.500 1.0010 3.58 0.2500 136.79 2.300 1.3808 65.71 1.2321 172.03
0.525 | 1.0012 3.95 0.2626 136.97 2.350 1.4111 67.95 1.2663 173.58
0.550 | 1.0014 | 4.33 0.2751 137.17 2.400 1.4429 70.19 1.3012 175.16
0.575 | 1.0017 4.73 0.2876 137.37 2.500 1.5111 74.65 1.3736 178.39
0.600 1.0020 5.15 0.3001 137.58 2.600 1.5855 79.09 1.4498 181.70
0.625 1.0024 5.59 0.3126 137.80 2.700 1.6665 83.50 1.5300 185.10
0.650 1.0028 6.04 0.3252 138.03 2.800 1.7541 87.87 1.6148 188.57
0.675 | 1.0032 6.52 0.3377 138.26 2.900 1.8486 92.21 1.7046 192.11
0.700 1.0037 7.01 0.3502 138.51 3.000 1.9502 96.52 1.7999 195.71
0.725 | 1.0043 7.51 0.3628 138.76 3.100 2.0593 100.79 1.9011 199.37
0.750 1.0049 8.04 0.3753 139.03 3.200 2.1760 105.03 2.0088 203.08
0.775 1.0056 8.58 0.3879 139.30 3.300 2.3009 109.25 2.1236 206.83
0.800 | 1.0064 9.14 0.4004 139.58 3.400 2.4342 113.43 2.2458 210.62
0.825 | 1.0072 9.72 0.4130 139.87 3.500 2.5764 117.60 2.3763 214.44
0.850 | 1.0081 | 10.31 | 0.4256 140.17 3.600 2.7280 121.75 2.5155 218.30
0.875 | 1.0091 | 10.92 | 0.4382 140.48 3.700 2.8894 125.87 2.6640 222.17
0.900 1.0102 11.55 0.4508 140.80 3.800 3.0613 129.99 2.8227 226.07
0.925 | 1.0114 | 12.19 | 0.4634 141.12 3.900 3.2443 134.10 2.9920 229.98
0.950 | 1.0127 | 12.86 | 0.4760 141.46 4.000 3.4301 138.19 3.1729 233.90
0.975 1.0140 13.53 0.4886 141.80 4.500 4.6179 158.59 4.2783 253.67
1.000 1.0155 14.23 0.5013 142.16 5.000 6.2312 178.93 5.8091 273.55
1.025 | 1.0171 | 14.94 | 0.5140 142.52 5.500 8.4473 199.28 7.9253 293.48
1.050 1.0188 15.66 0.5267 142.89 6.000 11.5008 219.62 10.8502 313.45
1.075 | 1.0207 | 16.40 | 0.5394 143.27 6.500 15.7170 239.96 14.8961 333.46
1.100 | 1.0227 | 17.16 | 0.5521 143.66 7.000 21.5479 260.29 20.5003 353.51
1.125 | 1.0248 | 17.93 | 0.5648 144.05 7.500 29.6223 280.61 28.2737 373.59
1.150 | 1.0270 | 18.72 | 0.5776 144.46 8.000 40.8176 300.92 39.0697 393.69
1.175 | 1.0294 | 19.52 | 0.5904 144.87 8.500 56.3586 321.22 54.0807 413.82
1.200 | 1.0320 | 20.34 | 0.6032 145.29 9.000 77.9565 341.52 74.9740 433.96
1.225 | 1.0347 | 21.17 | 0.6161 145.73 9.500 108.0039 361.81 104.0822 454.11
1.250 | 1.0376 | 22.02 | 0.6290 146.17 10.000 149.8476 382.10 144.6705 474.28
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3.2.2 Inductance

We examine the modeling methods for computing the inductance of transmission circuits. First
the fundamentals are presented, followed by more practical analysis methods.

3.2.2.1 Basic Magnetic Field Equation around a Conductor

Conceptually, the phenomena to be studied can be explained through the simple two-conductor
line illustrated in Figure 3.10. Assume that electric current i(t), which is time dependent, flows
through one conductor and returns through the other conductor. The current flow generates a
magnetic field that is time dependent, i.e. it follows the time variation of the electric current.
Consider an infinitesimal length dx of conductor. Let dA(t) be the magnetic flux linking the
electric current i(t) flowing in the infinitesimal length dx of the conductor. By definition, the
inductance of the length dx of the conductor is dL, where

_da)
G

dL (3.1)

Since the magnetic flux linkage is time varying, a voltage dv(t) will be induced along length dx
of the conductor:

ORGP

Now assume that the inductance of the conductor is L henries per meter; then

dL=Ldx
;“Jr— dv(t)—‘:

i(1) —»4 ‘ ' |
- dx »!

-l(t) —{ ;

Figure 3.10: A Simple Two Conductor Line
Upon substitution in the equations above and subsequent solution for L, we have

dv(t)
_dx .
L= o) H/m (Henries/meter) (3.2)

dt
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Equation (3.1) or (3.2) defines the inductance of a conductor. Specifically, Eq. (3.1) states that
the inductance equals the magnetic flux linkage divided by the electric current. Alternatively,
Equation (3.2) states that the inductance equals the induced voltage per unit length divided by the
time derivative of the electric current.

A transmission line is a complicated structure, comprising two or more conductors. Our
objective in this chapter is to characterize each conductor with its inductance and also any pair of
conductors with a mutual inductance.

We introduce the basic concepts by considering the magnetic field of an infinity long conductor
of circular cross section. For simplicity, assume that the conductor material is nonmagnetic. In

other words, the permeability of the conductor material is 4. A cross section of the conductor is

shown in Figure 3.11a. The radius of the conductor is a. Further assume that the conductor
carries an electric current i(t), which is uniformly distributed in the cross section of the conductor
(i.e. constant current density). Under these assumptions, it is relatively easy to compute the
magnetic field of the configuration and subsequently the inductance of the line.

Because of the existing cylindrical symmetry, the magnetic field intensity H at a point A,
illustrated in Figure 3.11a, will be perpendicular to the radial direction and the magnitude will be
constant on the circular contour with center O and radius r. In other words, the magnitude of the
magnetic field intensity, H, is a function of the radius r only [i.e. H(r)]. H(r) is computed with a
direct application of Ampere's law on the described configuration. There are two cases.

Conductor

(a)

J‘lB

(®) \

Figure 3.11: Infinitely Long Circular Conductor
[(a) Cross Section, (b) Magnetic Flux Density Along a Radial Direction]
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Case a. The point A is located outside the conductor:
r>a
Application of Ampere's law yields
i(t) = [H(r)-d=27rH(r)
C
Upon solution for H(r), we obtain:

H()_I(t) r>a

The magnetic flux density is given by

B(r)=,H(r) = 1, 2(t) , r>a
Case b. The point A is located inside the conductor:
r<a
Application of Ampere's law yields:
The electric current inside Ca: ic, = Iﬂ(r) -dl=27rH(r)

G,

(3.3)

(3.4)

In general the computation of the current inside the curve C, may be quite complicated. For
simplicity and for low frequencies, we introduce the simplifying assumption that the electric

current density is constant inside the conductor In this case:

:(ijiax r<a
a

Substitution and subsequent solution for H(r) yields

The electric current inside C2: i =

1
H(r I(t), r<a 3.5
(=5 £ 65
and
B(r H i(t), r<a 3.6
()uo()zﬂa”() (3.6)
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The results are summarized in Figure 3.11b, where the magnetic flux density B(r) is plotted as a
function of r along a radial direction.

From the magnetic flux density B, the magnetic flux @ crossing any surface S is computed from
the integral

QDZIB-ds
S

If the surface S crosses the conductor and since the electric current is distributed inside the
conductor, the magnetic flux will link variable portions of the electric current. In this case the use
of the concept of magnetic flux linkage is expedient. The magnetic flux linkage is defined by

A= j wB-ds
S

where w is the portion of electric current linked with the infinitesimal magnetic flux Beds.

Surface S
dr T T
> - D
A A dr
|
] r -
2a |+ - i)

l Conauctor

A
o~

Figure 3.12: Geometry of surface S

Given the magnetic flux linkage though a surface S, the induced voltage v(t) along the perimeter
of the surface is computed by
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As an example, consider a rectangular surface S, of dimensions [ and D, located on a plane
passing through the axis of the conductor. The surface S is defined in Figure 3.12. Consider the
two illustrated infinitesimal strips of the area ¢dr located on the surface S and parallel to the axis

of the conductor. One infinitesimal strip is located inside the conductor at a distance r, <a from
the axis. The magnetic flux through the infinitesimal strip dS, =(dr atr =r, <a(inside the

2
conductor), links n_r2 portion of the electric current. Thus the magnetic flux linkage d A (t) is
na

2 3:
A, (1) = 7 B(r)r = £ g
ma 27ma

The magnetic flux linkage of the second infinitesimal strip dS, = (dr at r =r, > a (outside the
conductor), links the entire electric current through the conductor. The magnetic flux linkage of
this infinitesimal strip d A4, (t) is

ol ()

dA,, (t) = —==~/dr
ext( ) 27zf

The total magnetic flux linkage through the surface S is

3- -
Aty = [7 AT 10D MO pgr 4 [° Al g,
=0 27a’ r=a 27r

Evaluation of the integrals provides the following result:

A) =M(l+|n(2jj (3.7)
2 a

4

Equation (3.7) is usually written in the following compact form:

At) = %i(t)ln [gj, d—ae (3.8)
T

The quantity d is known as the geometric mean radius of the conductor. The physical meaning of
the geometric mean radius is that a thin hollow conductor of radius equal to the geometric mean
radius and carrying the same electric current i(t), produces the same magnetic flux linkage as the
conductor under consideration. This interpretation will be illustrated by the following example.

Example E3.1: An infinitely long hollow conductor of average radius d and infinitesimal
thickness carries as electric current i(t). The conductor is illustrated in Figure E3.1a. For clarity,
it is shown with finite thickness.
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Hollow
(a) Conductor

=

(b)

Figure E3.1 Magnetic Field around a Hollow Conductor Carrying Electric Current

Show that the magnetic flux linking a rectangular surface of dimensions £ and D, with one / -
long side located on the axis of the conductor, is

At) = —“Ozf:r(t) In [g]

Solution: The magnetic field density around this configuration is illustrated in Fig. E3.1b.
Specifically, the magnetic field density is

B(r)=[ O, r<d

M1 r>d
2xr

The magnetic flux linkage is

Ay = [° 4O g _ #490O In(E)
r=d 27r 27 d

This completes the proof.

The induced voltage across the conductor due to the magnetic flux is readily computed from

v(t)= d;t_(t) - /‘_ofm(gj di(t)

dt 2 d) dt

By definition, the inductance of the conductor is
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On a per unit length basis, the inductance is

1 :Q‘_;m(gj (3.10)

One should observe that the inductance of the conductor is dependent on the width D of the
selected surface S. Since the width D can be selected arbitrarily, the result above does not have
any physical meaning. This peculiarity occurs because the path of return of the electric current
i(t) has been neglected. It is apparent that in order to compute the inductance of the conductor in
a unique and meaningful way, it is necessary to consider the entire circuit which includes the
path of return of the electric current. In any practical situation, all conductors or objects carrying
electric current will be located in a finite area. In this case, as we shall see in subsequent
sections, the inductance of the conductors can be uniquely defined. Despite the lack of realism of
the configuration being considered, the results obtained are fundamental for the computation of
the inductances of realistic transmission line configurations, as we shall see in subsequent
sections.

In summary we have derived expressions for the magnetic field density and magnetic flux
linkage of a current carrying conductor. We will use these results for the analysis of practical
transmission lines.

3.2.2.2 Inductive Equations of a Multi-Conductor Line

In general a line configuration involves multiple conductors. Each conductor carries a certain
electric current. Because of physical considerations (conservation of charge) the sum of the
electric currents must be equal to zero. Such an arrangement is shown in Figure 3.13. The current
of each conductor will establish a magnetic field around it which will link all other conductors.
The net result will be an induced voltage on each conductor. Considering conductor j, the
induced voltage will be along the conductor as it is shown in Figure 3.13. For computing this
voltage one must determine the magnetic flux linkage per unit length of the conductor.

Consider a rectangular frame with one side of the frame located on the axis of conductor j. The
frame extends to a distance x from the axis of the conductor and its length is I. The flux linkage

through this frame with respect to the current through conductor j, i.e. the flux linkage of
conductor j will be

A (®) = 25 (1) + - A (1)

where 4, (t) is the contribution of conductor k to the flux linkage of conductor j.
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Side View Cross-Section

I, —»{ O
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Il —v o e ——— — (
j N

P‘\\‘
X x\

~ |
I, —» . C

| |

N 4 g
I, —»i \ i

Figure 3.13: lllustration of Induced Voltage

To compute this term consider Figure 3.14, which illustrates the cross section of the system of
conductors (only conductors j and k are shown) and the frame jx. We would like to determine the
flux linkage through the frame jx defined with the axis of conductor j and a line parallel to

conductor j passing through point x. Note that the contribution to the magnetic flux linkage from
the current of conductor j is:

Ay () = ﬂoii;z_(t) In( 3” J

J

Also note that the contribution to the magnetic flux linkage of conductor j from the electric
current of conductor k is the magnetic flux linkage through the surface defined with the line d, .

This magnetic flux equals the flux linkage through the line mx which is given by

/ljkx (t) — ;uoglk (t) In Dkx
27 dj

Note that the distance dkm is the same as the distance djk. The total magnetic flux linkage through
the frame jx can be formed from the contribution to the flux from all conductors, i.e.:

2,0 =2 [ = ]+ > Halh0 ,n( D, J
7 j k

i T djk

The above equation can be written in compact form as follows:
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Figure 3.14: lllustration of Magnetic Flux Through Plane dix
due to Electric Current ik (t)

- ,Uofik (t) D,
A (1) = In
jX( ) kz_ll 2 djk

where n is the number of conductors, d
d

. Is the distance between conductors j, k if j =k, and
; Is the geometric mean radius of conductor j.

It is easy to prove that under the observation that Zn:ik (t) =0 and as the point x goes to infinity

k=1

0405440

Proof: Since the sum of all currents equals zero, then the current of the last conductor n can be
written as the negative sum of all other currents:

(0 =-3i )

Upon substitution in the expression for the magnetic flux linkage:

nx

ik in
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The above expression can be rewritten in the following form:

0= Zuof-” RO (d ] Zuoa XoF [ J Zuoen XoF (d j

Note that the last sum will vanish as the point x goes to infinity because each term will become
zero (logarithm of 1.0). The second sum can be expressed in terms of the current in conductor n.

Thus:
100 (1) 1
2.() = In
i® kz_ll 27 d;

This concludes the proof.

The induced voltage along the conductor is computed as the time derivative of the magnetic flux
linkage of the conductor.

da,(t i
v,(6)= () Z {dlijdléft)
Assuming sinusoidal steady state conditions,
v, (t)= Re[mjej”t]
i (1) = Re[\/ﬁfkej‘”tj

Upon substitution with manipulations

Ja),u 1 |- ~
Z . Ik = Xjklk
k=1

X, = Jop,l In 1
27 d;

The previous results can be directly used to determine the induced per unit length of any line.

where
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3.2.2.3 Inductive Equations of a Multi-Conductor Line Above Earth

Overhead or underground power transmission lines are characterized by the fact that earth is one
of the paths for the flow of electric current. Electric current can flow into the soil through the
grounding system (substation ground mat, pole grounds, etc.) and vice versa can flow into the
shield/neutral wires from the soil. During normal operating conditions, some electric current
flows in the conductive earth soil. This current it is generally generated by a combination of
inductive, conductive and capacitive phenomena. In general, the magnitude of the earth current
during normal operating conditions is comparatively low. During abnormal operating conditions
(faults), a substantial amount of electric current may flow through earth. In any case, the earth
current induces a voltage along the transmission line, thus affecting the performance of the
power line. As a matter of fact, most three-phase overhead transmission circuits are designed in
such a way that during ground faults the majority of the fault current flows through the earth.

The distribution of the current in the earth follows a complex, non-uniform pattern. As a result,
the computation of the inductive reactance of the earth path and the mutual inductance between
the earth path and overhead conductors is very complex. In this section we present the
expressions for the series impedances, derived by Carson [???] and Rudenberg [???]. The results
have been converted into the metric system of units (or English system) and adapted to the two-
conductor system above earth as it illustrated in Figure 3.15. Specifically, consider the simplest
configuration of two overhead conductors, j and k respectively, parallel to the surface of the

earth and carrying electric currents fj and I, , respectively. The configuration is illustrated in
Figure 3.15a and 3.15b. Assume that there are not any other conductors in the vicinity. Then the
current through the soil path, i.e. the earth current fe, is |, =—1; —I,. Carson [???] has given a

solution to this problem in terms of a complex infinite series. A converted version of Carson’s
result (converted into the metric system of units) is provided below (only the first few terms of
the infinite series are retained). Specifically, the induced voltage along the conductor a is:

- D. o D, o -
Vo= + i 2 == p o)+ i =2+ 2P, +jO,) T
2 d 4 2 d T

ab

Where:

ra is the conductor AC resistance at frequency » computed as follows:

ka M (ka)
“le M . (ka)

k =\ ouo , o is the conductor conductivity, and o is angular frequency of the electric current.

m(@ (ka)—6, (ka)——j ohms / meter

d is the geometric mean radius of the overhead conductor a, which is calculated in terms of the
conductor actual radius a as follows:
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_<
d=ae *
| _ 4 My(ka) ( 3_7;)
where : §— a Ml(ka) SIn Qo(ka) [7) (ka)+ 4

~

|, is the current through the overhead conductor a, and | is the current through the overhead

conductor b. The terms Paa, Qaa, Pab, Qap are computed in terms of infinite series, the first few
terms of which are given below:

X x> ot
Po=———= —O6728+In + +
w 8 32 ( x) 45\/_ 1536

2 3 4 4

Q. —00386+—In2+ x mx, X X X (Ing+1.0895]+
X 3J2 64 45\/' 384 3840 x
2 3 4
Pab=Z—Lcose+y—c0529(0.6728+In—)+—93in29+ Y cos30 - cos4d +..
8 32 16 16 45\2
2 3 4 4

Q,, ——00386+—|n3+—cose—”y—cosze+ V" cos30— Y 0sindg - Y cosag(inZ +1.0895) + .
2y 32 64 452 384 384 y

where:

x=k,D_ =2kh,

y=k.D,_., 0=sin1(%J
! Dab'

k, =+Joul p, where p is the soil resistivity
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a )

(a) (b)

Figure 3.15: Two Parallel Power Conductors Above Soil

Note that the above equation provides the self and mutual series impedances of any conductor or
any pair of conductors respectively. Specifically, the self-series impedance of conductor a is:

D .
2, i =1+ | 22 In— +22 P, + Q)
/A

a,series ~— 'a 2
T

The mutual series impedance between conductors a and b is:

D .
7 _ '%|n_ab+%(pab+anb)
d T

ab,series = J 2
ab

The above impedances are given in per unit length. Note that these equations can be repeated for
any conductor and any pair of conductors of any complex arrangement of n conductors.

Equivalent Depth of Return Method: This method is obtained from the general solution
(Carson [???]) presented earlier if only the first term of the infinite series is retained. The basic
equations of this model can be stated with the aid of Figure 3.15 which illustrates two horizontal
conductors above earth. The two conductors may be the two phases of a line, a phase conductor
and a shield conductor, etc. The induced voltage on conductor a is expressed in terms of the
equivalent depth of return, De, defined by
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D, = 2160 \/% ( feet) = 658.368 /? (meters)

where p is the soil resistivity in Ohm-meters, and f is the electric current frequency in Hz. The
induced voltage per unit length of conductor a is

~ D D )\~
V,=|r +T, +J—In— .+ r+j—ﬂln =11,
2r  d, 2r Dy,

W= le ka M, E ;sm(el(ka)—ﬁo(ka)—%j ohms / meter
wu _<
re :?, k=\/ouo ,and d, =ae *
4 Mo(ka) . ( 372')
i =— 6,(ka)-6, (ka)+—
with & " Ml(ka)sm ) (ka)—6, (ka)+ .

radius of conductor a
angular frequency
permeability of free space ( 4nx107 H/m)

conductivity of the conductor
M, 6, =modulus and phase of the modified Bessel function of first kind and zero order

SERNECIES
TRNTINT

M., 6, = modulus and phase of the modified Bessel function of first kind and first order.

Above equation provides the self and mutual series impedance of any conductor or any pair of
conductors respectively. Specifically, the series self-series impedance of conductor a is:

”InR
2r d

a

Z, i =0 L+ ]

a,series

The mutual series impedance between conductors a and b is:

VA

ab,series —

27z b

The above method is called the equivalent depth of return method. It is also many times referred
to as Carson’s equation. This simplified formula is valid only for usual soil resistivities (20 to
500 Ohm.m) and for low frequencies such as the power frequency (50 or 60 Hz), and for usual
overhead line configurations.
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Interpretation of the Equivalent Depth of Return Method: A physical interpretation of the
equivalent depth of return method can be provided as follows. The equivalent depth, D,, defines

the cross section of the soil under the line where the majority of the electric current returns. For
example, consider the simple case of one conductor above earth carrying an electric current and
the electric current returns through the earth. The return current is spread into the soil and most
of the current returns to the source through a semi-circle with radius equal to the equivalent
depth of return. The higher the frequency the smaller the radius will be. This interpretation
applies to any electric current under a multi-conductor line in which case the return current
through the earth will be the negative sum of all currents in the conductors of the line. A
visualization of this interpretation is provided in Figure 3.16.

De

Figure 3.16: Interpretation of the Equivalent Depth of Return Method

Complex Depth of Return Method: Another method which is provided in closed form and it is
remarkably accurate over a wide frequency range is the complex depth of return method. The
basic equations of this model can be stated with the aid of Figure 3.15 which illustrates two
horizontal conductors above earth. The two conductors may be the two phases of a line, a phase
conductor and a shield conductor, etc. The induced voltage on conductor a is expressed in terms
of the complex depth p [???] [??7?], defined by:

1.0

Jiowl p
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where p is the soil resistivity. The induced voltage per unit length of conductor a is

~ ~ h.+h +2p)>+d2 |.
Va:(raﬂ' ﬂ'”Z(haer)j'w ja)”ln\/(aJr b +2P) + |
27 d 2 \/(ha _hb)2 +da2b

T

r=r @Msin(ég(ka)—% (ka)_Zj ohms / meter

=T M, (ka)

=

=
=3

]

heights of conductors a and b above ground (meters)

o
sn
=3

|

= horizontal separation between conductors a and b (meters)
radius of conductor a (meters)

angular frequency (rad/s)

permeability of free space (4nx10"H/m)

conductor conductivity (S/m)

soil resistivity (m)

MO’ eO

M, €, = modulus and phase of the modified Bessel function of first kind and first order.

modulus and phase of the modified Bessel function of first kind and zero order.

The above equation provides the self and mutual series impedance of any conductor or any pair
of conductors respectively. Specifically, the series self-series impedance of conductor a is:

Z =r 41+ ]

a,series

ou, 2(h, +p)
T d

The mutual series impedance between conductors a and b is:

Ly ﬂln\/(ha+hb+2p)2+d§b

Za ,series e J
b 27 J(h,~h) +dj
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The above method is called the complex depth of return method which is a closed-form
approximation to Carson's solution and was suggested by Semlyen and Deri [???]. This closed-
form solution yields a remarkably close agreement with the exact Carson's solution in a wide
range of frequencies (0 to 10 MHz) for typical overhead line configurations.

Summary of the Three Methods: Note that each one of the three presented methods provide the
self and mutual impedance of two parallel conductors above earth. These results can be easily
generalized to an n-conductor configuration above soil by considering two conductors at a time.
Specifically, the series impedance of an n-conductor power line is provided by

I:Qll"'jxll I:212 + leZ
Z=R+ jolL=
Rnl + anl Rn2 + anZ Rnn + ann

The elements of the above matrix can be computed with any of the three methods presented.

Example E3.2: Consider the three-phase electric power line of Figure E3.2. The phase
conductors are ACSR, 556,500 cm, 26 strands. The line does not have an overhead ground wire.
The soil resistivity p is 75 Qm. Compute the resistance and inductance matrices of this line
using: (a) The equivalent depth of return, (b) The complex depth of return method.
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Phase Conductors
ACSR 556.5 kem
26 strands
[
b ' —
9!
“UT
5!
l [
C
14 .
45'
Figure E3.2
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Solution: (a) The series impedance of the line using the equivalent depth of return method is:

[ D D D, |
In—= In—=% In—
r + re re re daa dab dac
: o, D, D, D,
R+joL=| r, r+r, 1, [+]—]In In In
r r F+r 27 e s be
° ¢ ¢ |n& |n& |n&
L dca dcb dcc_

From ACSR conductor tables we obtain the following conductor parameters:

e Conductor Resistance at 60 Hz, r = 0.1611 Q/mile = 0.0001 Q/m.
e Conductor Geometric Mean Radius: 0.0315 feet.

Furthermore,

D, = 2,160, ’E =2,415 ft
60

d,, =d,, =14.56 ft

d, =d_ =14.87 ft

d,, =d,, =9.0 ft

d,, =d,, =d_ =0.0315 ft

Upon substitution into the above impedance matrix formula:

0.159 0.059 0.059 0.8478 0.3853 0.3838
R+ joL=1070.059 0.159 0.059 |+ j107°| 0.3853 0.8478 0.4215| Ohms/meter
0.059 0.059 0.159 0.3838 0.4215 0.8478

(b) The series impedance of the line using the complex depth of return method is:

Za,series Zab,series Zac,series
R + JCOL = Zba,series Zb,series Zbc,series
an,series Zcb,series Zc,series
Where:
) 2(h + )
Zi,series:ri-'_leuln (I p),|=a,b,C,and
T
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. yln\/(hi+hk+2p)2+dii

Zi sorios = J , ik =ab,bc,ca
series o \/(h, _hk)2 +dii
X 0 1.0
where: B T
Jieul p
Upon substitution one obtains:
p=281.349— j281.349m
and:
0.157 0.057 0.057 0.8559 0.3906 0.3876
R+ joL=107°|0.057 0.157 0.057 |+ j10°| 0.3906 0.8561 0.4034| Ohms/meter
0.057 0.057 0.158 0.3876 0.4034 0.8557

Comparing the results of (a) and (b) it appears that they are remarkably close.

3.2.3 Capacitance

In this section we discuss methods by which the capacitance of a transmission line can be
computed. For this purpose we employ an approach analogous to the one for computing the
inductive reactance of a transmission line. Recall that for the computation of the inductive
reactance, the magnetic field around the transmission line was examined. For the computation of
the line capacitance, the electric field around the line will be examined. The source of this
electric field is electric charge, which is deposited on the surface of the line conductors. The
analysis of the electric field results in a model relating the electric charge and the conductor
voltage. The time derivative of the total electric charge on the surface of the conductors is by
definition the capacitive current (or the charging current) of the line. Utilizing this definition, the
model can be transformed into a relationship between the line voltage and the capacitive current.
The line capacitance can be extracted from this model.

This general approach will be utilized to introduce the analysis of capacitive phenomena in lines
in a step-by-step procedure. Specifically, first the simplest case of a single circular conductor
will be examined to establish the basic equations. Then the analysis will be extended to two
parallel conductors and the general n-conductor line configuration.

3.2.3.1 Basic Electric Field Equations around a Conductor

Consider the simple case of one circular infinitely long conductor. We shall assume that the
conductor is electrically charged and we shall seek the relationship between the electric charge
and the conductor voltage. Specifically, assume that the conductor is charged with electric
charge g (coulombs per meter). Because of symmetry, the electric charge will be uniformly
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distributed on the conductor surface. The electric charge generates an electric field around the
conductor. Because of symmetry, the electric field intensity E will be radially directed and the
magnitude will depend only on the distance of the point of observation from the axis of the
conductor, as illustrated in Figure 3.17:

E=E(ra (3.13)
Where &, is a unit vector in the radial direction r.

Consider a cylinder of length [ and circular bases of radius r. The axis of the cylinder is
coincident with the axis of the conductor, as it is illustrated Figure 3.17. Let S be the surface of
the cylinder and V its volume. Application of Gauss’s law yields:

mpdv:ﬂ |3.d§:jjg|§.d§ (3.14)
(4
< .dS
] o
/ dB{\\ U \\

2a
. Conductor

A\ /
Volume V- .

Surface S

B
Figure 3.17: An Infinitely Long Circular Conductor

where
p = electric charge density, C / m®
E = electric field intensity
D = electric field density
dv = infinitesimal volume
ds = infinitesimal surface area vector
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The volume integral of the electric charge density inside the volume of the cylinder equals the
total electric charge enclosed in the volume. It can be immediately computed by observing that
electric charge exists only on the conductor surface at a density of g coulombs per meter. Thus

IJIpdeqf

The surface integral on the right-hand side of Equation (3.14) is computed as follows:

”ﬁﬁz”ﬁ£+gﬁ£+gﬁ£

S S
where S, Sy are the bases of the cylinder and Ss is the side surface of the cylinder. Note that

because the electric field is radially directed, the contributions of the bases of the cylinder will
vanish, that is,

”f).d§ = ”f).d§ =0.0
S, S,

As has been discussed, the magnitude of the electric field intensity E and therefore D is a
function of the radial distance r only. Thus on the surface Ss, the magnitude of the electric field

density, D(r), is constant. In addition, the vector D is perpendicular to the surface S3 and thus
parallel to dS. Thus

j j D.ds = 2zr¢D(r)

Substitution into Eq. (4.2) yields
gl = 27r¢D(r) = 2arl E(r)

In above equation we used the constitutive relationship: D(r) = €E(r). Solution of above equation
for E(r) yields:

E(r) =3 (3.15)

2mer
The electric field inside the conductor is zero.

The computed electric field intensity provides the basis for computation of the potential
difference between any two points A and B. This difference is the voltage V o between point A

and B, defined by:

Vi =D(A)-@(B)= [ E(r).d(

CA%B
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The value of above integral depends only on points A and B (the reader is encouraged to prove
it). Evaluation of the integral yields:

Vie= [E(Mdi= 9 jnde

3.16
2nre  d, (3.10)

CA*}B

where: d, and d; are the distances of points A and B respectively from the axis of the
conductor.

Equation (3.16) relates the electric charge on the conductor to the potential difference between
two points located at radial distancesd, and d;, respectively, from the axis of the conductor.

Equation (3.16) is the basic equation utilized in the analysis of transmission line capacitance.
3.2.3.2. Capacitive Equations of a Multi-Conductor Line

Consider a configuration of n conductors which are parallel and infinitely long. The conductor
cross section is circular. Figure 3.18 shows a cross section of the configuration. Assume that
electric charge gj(t) per unit length has been accumulated on the surface of conductor i which is

uniformly distributed over the surface of the conductor. As a first step, we consider the potential
of conductor i with respect to an arbitrarily selected point of reference X which is illustrated in
Figure 3.18. For this purpose the principle of superposition and the results of section 3.2.3.2 are
employed to yield

X
q '

i Jx

q: 5

Figure 3.18: General Configuration of n-Parallel Conductors

n d

1]

(3.17)

where
d;; = distance between the axes of conductors i and j

d, = distance between the axis of conductor j and point X
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